

СФЕРА ЭКОНОМНЫХ ТЕХНОЛОГИЙ

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ

СЧЕТЧИКИ ИМПУЛЬСОВ БОРЕЙ GA

Протокол обмена

Оглавление

Система команд канала UART	2
Порядок хранения и передачи байт данных	3
Алгоритм генерации CRC	4
Адресация регистров	5
Коды ошибок	6
Командный регистр	6
Тип устройства	6
Поле DIB	7
Поле VIB	7
Назначение входа	7
Маски типов событий	7
Алгоритм получения архивных данных	7
Протокол обмена по каналу GPRS	8

Система команд канала UART

Командно-информационный обмен управляющего компьютера со счетчиком осуществляется в пакетном режиме по принципу "команда-ответ". В качестве физической среды передачи информации используется канал RS485 со следующими параметрами:

- * Режим передачи 8 бит без проверки на четность, 1 стоп-бита.
- * Скорость обмена 9600.
- * Максимальная длина посылки 74 байта.
- * Порядок следования байтов в слове: старший байт вперёд.
- * Порядок следования слов: младшее слово вперёд.

Протокол обмена соответствует стандарту Modbus режим RTU.

Формат кадра сообщения

Адрес устройства	Команда	Данные	Контрольная сумма
1 Байт	1 Байт	N Байт	2 Байта

Для обмена данными со счётчиками используются следующие команды:

0х03 - Получение текущего значения одного или нескольких регистров,

0х10 - Установить новые значения одного или нескольких последовательных регистров.

03h - Получение текущего значения одного или нескольких регистров

Формат запроса:

Адрес устройства	Команда	Начальный адрес регистра	Количество регистров	Контрольная сумма
А	0x03	X X (2 Байта)	N N (2 Байта)	СС

Формат ответа при выполнении без ошибок:

Адрес устройства	Команда	Количество байт данных	Данные	Контрольная сумма
А	0x03	D (1 Байт)	D Байт	СС

10h - Установить новые значения нескольких последовательных регистров

Формат запроса:

Адрес	Кома	Начальный	Количество	Количество	Данные	КС
устройства	нда	адрес регистра	регистров	байт данных		
А	0x10	XX	NN	D (D = NN * 2)	D Байт	СС

Формат ответа при выполнении без ошибок:

Адрес устройства	Команда	Начальный адрес регистра	Количество регистров	Контрольная сумма
А	0x10	ХX	NN	СС

Формат ответа при выполнении с ошибкой:

Адрес устройства	Команда	Код ошибки	Контрольная сумма
Α	Установлен старший бит	E	CC

Порядок хранения и передачи байт данных

Для чтения и записи регистров в стандарте Modbus предусмотрены специальные функции, которые оперируют содержимым шестнадцатиразрядных регистров. Эти функции предполагают, что прибор хранит данные только типа шестнадцатиразрядное беззнаковое целое и ничего не «знают» о тех типах данных, которыми действительно представлены параметры прибора. Таким образом, получается, что в приборе данные хранятся в некоем исходном формате, а передаются по сети в виде набора шестнадцатиразрядных регистров. При передаче данных, чей размер в исходном формате превышает 16 бит (long, float, double и т.д.), используются несколько последовательных регистров. При этом младшие слова передаются в первую очередь, старшие в последнюю. Т.о., для преобразования к порядку байт, естественному для платформы РС, требуется для каждого прочитанного/записываемого регистра изменить порядок байт.

Пример размещения данных для типа Int32

Регистр	Регистр А0		Реги	стр А1
Порядок передачи	первый			последний
Байт	B1	B0(LSB)	B3(MSB)	B2

Данные типа Char хранятся по одному в регистре.

Пример размещения массива Char[2]

Регистр	Регистр А0		Реги	стр А1
Порядок передачи	первый			последний
Байт	0	В0	0	B1

Алгоритм генерации CRC

- 1. 16-ти битовый регистр загружается числом FFFF hex (все 1), и используется далее как регистр CRC.
- 2. Первый байт сообщения складывается по ИСКЛЮЧАЮЩЕМУ ИЛИ с содержимым регистра CRC. Результат помещается в регистр CRC.
- 3. Регистр CRC сдвигается вправо(в направлении младшего бита) на 1 бит, старший бит заполняется 0.
 - 4. (Если младший бит 0): Повторяется шаг 3 (сдвиг)

(Если младший бит 1): Делается операция ИСКЛЮЧАЮЩЕЕ ИЛИ регистра CRC и полиномиального числа A001 hex.

- 5. Шаги 3 и 4 повторяются восемь раз.
- 6. Повторяются шаги со 2 по 5 для следующего сообщения. Это повторяется до тех пор пока все байты сообщения не будут обработаны.
 - 7. Финальное содержание регистра CRC и есть контрольная сумма. Контрольная сумма передаётся младшим байтом вперёд.

Табл.1 Адресация регистров

Адрес	Тип данных	Назначение	Диапазон	Чтен	Зап
0x0000	Int32	Серийный номер	0-99999999h	V	V
0x0002	Int16	Версия ПО		V	
0x0003	Int16	Идентификатор ПО		V	
0x0004	Int16	Номер сборки ПО		V	
0x0007	Int8	День месяца сохранения данных в журнал	1-31	V	V
8000x0	Int32	Текущее время в формате UTC		V	V
0x000A	Int16	Регистр состояний		V	
0x000B	Int16	Командный регистр			V
0x000C	Int16	Период передачи, ч	1-65535	V	V
0x000D	Int16	Период сохранения данных в журнале, мин	1-255	V	V
0x0100	Struct	Структура настроек канала 1		V	V
0x0200	Struct	Структура настроек канала 2		V	V
0x0300	Struct	Структура настроек канала 3		V	V
0x0400	Struct	Структура настроек канала 4		V	V
0x0500	Struct	Структура настроек канала 5		V	V
0x0600	Struct	Структура настроек канала 6		V	V
0x0700	Struct	Структура настроек канала 7		V	V
0x0800	Struct	Структура настроек канала 8		V	V
0x0900	Struct	Структура настроек канала 9		V	V
0x0A00	Struct	Структура настроек канала 10		V	V
0x0B00	Struct	Структура настроек канала 11		V	V
0x0C00	Struct	Структура настроек канала 12		V	V
0x0D00	Struct	Структура настроек канала 13		V	V
0x0E00	Struct	Структура настроек канала 14		V	V
0x0F00	Struct	Структура настроек канала 15		V	V
0x1000	Struct	Структура настроек канала 16		V	V
0x2000	Int32[N]	Показания по каналам в импульсах	0- 4 294 967 295	V	V
0x2050	Float32[N]	Показания по каналам вычисленное	>0	V	V
0x20A0	Int32	Состояния входов		V	
0x2100	Int16	Индекс записи основного журнала	1-2047	V	V
0x2101	Int16	Индекс записи месячного журнала	1-341	V	V
0x2102	Int16	Индекс записи журнала событий	1-340	V	V
0x2110	Float32[N]	Запись основного журнала		V	
0x2150	Float32[N]	Показания по месяцам		V	

0x2200	Struct	Структура описания события		V	
0x2300	Int16	Номер порта сервера	0-65535	V	V
0x2301	Char[4]	Пин-код симки	0000-9999	V	V
0x2400	Char[64]	Домен		V	V
0x2500	Char[64]	Имя скрипта		V	V

Табл. 2 Структура настроек канала

Смещение	Тип	Назначение	Диапазон
	данных		
0	Int16	Код производителя	0-65535
1	Int32	Серийный номер устройства	0-9999999h
3	Int8	Версия	0-255
4	Int8	Тип устройства	0-255
5	Int16	DIB	0-65535
6	Int16	VIB	0-65535
7	Int8	Назначение входа	0-4
8	Float32	Вес импульса	>0
10	Int16	Минимальная длительность импульса (мс)	14-15999

Табл. 3 Структура описания события

Смещение	Тип данных	Назначение
0	Int32	Время в формате UTC
2	Int16	Тип события
3	Int32	Состояние входов
5	Float32[N]	Показания по каналам вычисленное

N – количество каналов, для Бореев GA N=4.

Коды ошибок

0х01 – Неизвестная команда;

0х02 – Неизвестный адрес регистра;

0х03 – Неверное значение параметра;

0х04 – Переполнение буфера данных;

0х05 – Запись в журнале отсутствует.

Командный регистр

При записи в этот регистр, счётчик выполняет следующие действия:

0х0001 – очистка основного журнала,

0х0002 - очистка месячного журнала,

0х0003 – очистка журнала событий,

0х0005 – внеочередная передача данных.

Тип устройства

Тип подключаемого счётчика кодируется согласно стандарту mBus:

02 – электричество,

03 – газ,

04 – теплосчётчик,

06 – горячая вода,

07 – вода,

16 – холодная вода.

Поле DIB

Поле DIB используется для указания типа данных и разбиения по тарифам:

0х0005 - число с плавающей точкой без указания тарифа

0х1085 - 1-й тариф,

0х2085 - 2-й тариф,

0х3085 - 3-й тариф,

0х4085 - энергия отпущенная,

0х5085 - энергия отпущенная 1-й тариф,

0х6085 - - - 2-й тариф,

0х7085 - - - 3-й тариф.

Поле VIB

Поле VIB определяет единицы измерения параметров:

0х0003 - 1 Втч,

0х0004 - 10 Втч,

0х0013 - 1 л,

0х0014 - 10л,

0x09FB - 1 ГДж,

0x0DFB - 1 Мкал

Назначение входа

0 – не подключен,

- 1 импульсный счётный вход,
- 2 импульсный аварийный вход,
- 3 счётный вход намур,
- 4 аварийный вход намур.

Маски типов событий

0х0001 – перезапуск устройства,

0х0002 – отключение внешнего питания,

0х0004 – включение внешнего питания,

0х0008 – изменение состояния входов защиты.

Алгоритм получения архивных данных

Записать индекс записи считываемого журнала (основного, месячного или событий), считать журнальную запись.

Максимальное количество записей в журналы:

основной – 2047,

месячный - 341,

событий – 340.

Протокол обмена по каналу GPRS

По каналу GPRS счётчик передаёт данные POST-запросом. В запросе присутствует раздел CMD, который содержит команду DevVal. Следующий раздел DATA содержит данные от подключенных приборов в двоичном формате.

Пример запроса:

POST /chron/bin/chronos.cgi? HTTP/1.1

Host: chronosmeter.ru

Content-Type: multipart/form-data; boundary=BoreyGA09

Content-Length: длина тела запроса

--BoreyGA09

Content-Disposition: form-data; name="CMD"

Content-Type: text/plain

DevVal

--BoreyGA09

Content-Disposition: form-data; name="DATA"

Content-Type: application/octet-stream Content-Transfer-Encoding: binary

<Пакет 1 данных от прибора><Пакет 2 данных от прибора>...

--BoreyGA09--

Структура пакета данных:

LLMMSSSSVTDIBVIBVal < DIBVIB Val >... 01 FD 17 FL 04 6D tttt CC

L L – длина тела пакета, не включая контрольную сумму СС, 2 байта,

М М – код производителя прибора, 2 байта,

S S S S – серийный номер прибора, 4 байта,

V – версия прибора, 1 байт,

Т – тип прибора согласно стандарту EN 13757-4:2005, 1 байт,

DIB – поле DIB согласно стандарту EN 13757-4:2005, берётся из соответствующего поля настроек канала, 1 или 2 байта,

VIB – поле VIB согласно стандарту EN 13757-4:2005, берётся из соответствующего поля настроек канала, 1 или 2 байта,

Val – показания от прибора в формате с плавающей точкой (4 байта) или флаг состояния канала (1 байт), если канал настроен как аварийный,

04 6D t t t t – время на момент снятия данных, формат представления Туре F, согласно стандарту EN 13757-4:2005,

01 FD 17 FL – флаги состояния, 0 – нет ошибок, 1 – замкнут аварийный вход, 2 – обрыв (Namur), 4 – короткое замыкание (Namur).

С С – контрольная сумма стандарта mBus (2 байта).

Порядок следования байт в пакете – младшие вперёд (little endian).

Пример пакета:

18 00 92 0A 40 20 25 28 00 07 05 13 80 60 A1 48 01 FD 17 00 04 6D 00 2A 51 26 B6 18:

18 00 – длина,

92 0А – код производителя ВТР,

40 20 25 28 – серийный номер прибора 28252040,

00 – версия,

07 – тип – счётчик воды,

05 – DIB – число с плавающей точкой,

```
13 – VIB – единицы измерения 1л,
80 60 A1 48 – показания 330500,
01 FD 17 00 – флаги состояния, нет ошибок,
04 6D 00 2A 51 26 – время 2018-06-17 10:00:00,
B6 18 – контрольная сумма.
```

Если 2 или более смежных канала настроены так, что у них одинаковый идентификатор прибора, состоящий из кода производителя, серийного номера, версии и типа прибора, то пакет данных состоит из длины пакета, идентификатора канала, данных канала, данных смежных каналов, времени и контрольной суммы.

```
В ответном сообщении от сервера счётчик ждёт строку
<DateTime>ГГГГ-ММ-ДД ЧЧ:ММ:CC</DateTime>,
по которой синхронизируется с сервером.
// Pacчem контрольной суммы стандарта mBus
int mbus_crc( char* pdata, int len )
{
   int crc = 0;
   while( len-- )
          crc ^= *pdata++ << 8:
          for (int i=0; i<8; i++)
                 if (crc & 0x8000)
                        crc = (crc << 1)^0 x 3D65;
                 else
                        crc <<= 1;
   }
   return crc^0xFFFF;
}
```